激光加工机床如激光打孔机和激光切割机除具有一般机床所需有的支承构件、运动部件以及相应的运动控制装置外,主要应备有激光加工系统,它是由激光器、聚焦系统和电气系统三部分组成的。
1. 激光器
激光器由激光光源、光泵、聚光器和谐振腔组成,应用于加工的激光器主要有:
(l)固体激光器
具有稳定性好的特点,但能量效率低一般<3%,由于输出能量小,主要用于打孔和点焊及薄板的切割。(掺钕钇化铝石榴石)等作为工作物质。YAG是固体激光中能发出最大功率的离子激光。YAG的结晶母材是由钇、铝和石榴石构成的,其中微量的钕离子刚起激光作用。YAG的激光波长为1.06μm,相当于二氧化碳气体激光坤长的1/10。它的绿色的激光束可在脉冲或连续波的情况下应用,具有波长短、聚光性好适于精密加工特别是在脉冲下进行孔加工最为有效,也可用于切削、焊接和光刻等。且由于聚光性好,可通过光导纤维传格能量,适用于内腔加工等特定切合,其能量效率不及CO2气体激光源最多不超过3%,目前产品的输出功率大多在600W以下,最大已达4kW。另一种红宝石激光源的波长更 短为0.69μm,稳定性好,但能量效率0.1%~0.3%,主要用于打孔和点焊。
1) 光泵是使工作物质发生粒子反转产生受激辐射的激励光源,因此光泵的发射光谱应与工作物质的吸收光谱相匹配。常用的光泵有脉冲氙灯和氪灯,脉冲氙灯的发光强度和频率较高,适用于脉冲工作的团体激光器,而氪灯的发光光谱能与YAG的吸收光谱很好匹配,是YAG连续激光器的理想光泵。为改善照射的 均匀性,光泵可用双灯有上、下两个、三灯或四灯。
2)聚光器罩在光泵的外围,它是把光泵发生的光有效地、均匀地集中到工作物质上。聚光器中常用的是圆柱聚光器和椭圆聚光器,也有球形、椭球和紧包形的聚光器。其要求为聚光均匀、散热好、结构简单、 内壁反射率高,表面粗糙度Rα0.04μm以下,通常聚光效率达80%。
3)谐振腔是光学反馈元件,它的作用是位光放大介质产生光振荡。其类型对激光输出能量和发散角有很大影响,常用的平行平面谐振腔由图l中反射镜1与4组成,谐振腔的长度为激光半波长的整倍数,反 射镜平行度<10"。
(2)气体激光器
常用的工作物质有分子激光的二氧化碳(CO2)和离子激光的氩气(Ar),后者输出功率为25W,它的10ns级短脉冲,使热影响区小,用于半导体、陶瓷和有机物的高精度微细加工。而CO2 激光器的功率在连续方式工作时可达45kW,脉冲式可达5kW,故在加工中应用最广。
1)CO2气体激光器的波长为10.6μm,处于红外线领域,因而其激光束为不可见光。它是在氦的体积分数约80%,氮的体积分数约15%和CO2的体积分数约5%的混合气体中进行放电形成粒子数反转的分子激光。它的能量效率通常为5%~10%高效装置甚至可达10%~15%。
2)气体激光的激励虽也可用光泵的方法,但大多用直流放电(图2)或高频放电的方式。
3)诸振腔由放电管两端的镜面构成,一端是镀金凹镜,另一端是锗或砷化镓平镜,它们也兼作密封之用。
CO2激光器的输出功率与放电管的长度成正比,低速轴流式的气体流速慢,输出功率小,约50~70W/m,但其输出功率稳定,易得到单模,一般用于百瓦级激光器。对于千瓦级的CO2激光器则采用气体循环速度达100m/s的高速轴流式的激光器或气流及放电与激光光轴垂直的双轴直交型以及气流、放电与激光光轴三 者互相垂直的三轴直交型可达到使激光器小型化。
2. 见惯系统
其作用是把激光束通过光学系统精确地聚焦至工件上大放具有调节焦点位置和观察显示的功能。CO2激光器输出的是红外线,故要用锗单晶、砷化镓等红外材料制造的光学透镜才能通过。为减少表面反射需镀增速膜。图3为应用于CO2激光切割机的透射式聚焦系统。图中在光束出口处装有喷吹氧气、压缩空气或惰性气体N2的喷嘴,用以提高切割速度和切口的平整光洁。工作台用抽真空方法使薄板工件能紧贴在台面上。
3.电气系统
电气系统包括激光器电源和控制系统两部分,其作用是供给激光器能量(固体激光器的光泵或CO2激光器的高压直流电源)和输出方式(如连续或脉冲、重复频率等)进行控制。此外,工件或激光束的移动大多采用CNC控制。
为了实现聚焦点位置的自动调整,尤其当激光切割的工件表面不平整时,需采用焦点自动跟踪的控制 系统 轴快流CO2激光器的气流方向、放电方向和激光束输出方向都是一致的,有两种常用的结构,主要区别在于一种是直流放电激励,另一种是射频放电激励。图1-1给出直流放电激励轴快流CO2激光器的方框图。轴快流CO2激光器由谐振腔、放电管、热交换器、风机、气源、真空泵、电源和控制等几部分组成。影响激光器工作性能的关键因素是气流方式、放电结构、谐振腔的稳定性等。
激光谐振腔是激光束产生的地方,它是一个光学谐振腔,以及一个光放大器。谐振腔是安装光学器件的热与机械的稳定结构。为获得大体积均匀的辉光放电,设计时一般采用分段电离,利用多个放电管分段放电。放电时,激光气体沿着它的玻璃管(放电管)流动,一般正电极位于气流方向上游,负电极位于下游。当高压直流电流通过阴极和阳极时,会产生辉光放电,经过谐振腔的共振放大,产生高功率的激光输出。工作气体激发过程中产生的废热,要通过气体流动在热交换器中排出。为了能及时冷却放电的工作气体和及时带走不稳定因素,要求激光风机能推动工作气体高速流动,在放电管中气体流速约为300米/秒至业音速。
为了能使CO2激光器长时间稳定运行,要求外部的工作气体源CO2 、N2、He按一定比例混合以后,能随时补充少量的新鲜气体到放电区。 真空泵的作用是在激光器开始运行时,抽去放电管中的空气等杂质气体,使得充入工作气体保持正常的混合比及纯度。同时在激光器运行过程中,真空泵将抽去少量变质的气体,使补充新鲜气体后,放电管内气压保持恒定。这是高功率轴快流CO2,激光器连续、稳定运行的必要条件和关键技术之一。
控制单元就是使所有的部件按一定的流程正常地工作,并实时监测激光器的状态,保证激光器的安全运行。 电源及功率控制系统是控制激光器工作的核心部分,通过调节开关电源来实现激光器的连续和脉冲方式工作。CO2激光器工作在辉光放电状态,是呈负阻特性的非线性负载,因此,要求电源特性应与气体放电管的非线性伏一安特性相匹配,且保证气体放电间隙的点火条件。
光的本质是一种电磁波,它既有微粒特性又具有波动特性。激光与普通光一样也是电磁波,它的历史年代可以追溯到1917年,爱因斯坦在他的经典著作“关于辐射的量子理论”中第一次提出了受激发射的概念,论证了受激发射、自发发射和光吸收之间的关系,这些基本理论为以后的激光发展提供了理论基础。激光具有单色性好,方向性强、亮度高的特点,对生物组织的作用有光效应、热效应、压力效应和电磁效应。各种激光器被广泛应用在医学领域中,它们不仅是医学研究的有力工具,也在疾病诊断、治疗等方面获得了极为广泛的应用,成为人类战胜疾病的又一武器。
气体激光器及其在医学上的应用
根据工作物质进行分类,激光器可以分成气体激光器、固体激光器、液体激光器、半导体激光器等。气体激光器能连续输出激光,是医学中用得最多的激光器,如氦——氖激光器(He-Ne 激光器)、二氧化碳激光器(CO2激光器)、氩离子和氪离子激光器、氮分子激光器、氦镉激光器和波长可调的准分子激光器等。
1.氦—氖激光器(He-Ne 激光器)
氦—氖激光器(He-Ne 激光器)是原子气体激光器,工作物质是氦原子和氖原子气体,氖原子能级间的跃迁产生激光谱线,氦原子起能量转移作用,这是最早研究成功的气体激光器。医学中常将此种激光器用做“光针”和照射治疗的工具,对溃疡的治疗有较好的疗效。
2.二氧化碳激光器(CO2激光器)
CO2激光器是气体分子激光器,工作物质是CO2气体,辅助气体有氮气,氦气,氙气和氢气等。由于这种激光器能量转换效率高达25%。故常做成高功率输出的激光器。CO2激光器的波长为10.6μm,是不可见的红外光,与生物组织作用时,几乎全被生物组织200μm内的表层吸收,稳定性较好,医学上应用广泛。
3.氮分子激光器
氮分子激光器是分子气体激光器,工作在紫外波段(波长377.1nm)。这种激光的脉冲宽度窄,峰值功率高,对生物体的作用是非常强烈的,医学上用它诊断和治疗肿瘤。
4.氩离子激光器
氩离子激光器是气体离子激光器,与其同类的还有氪离子激光器、氖离子激光器和氙离子激光器等,结构基本相同。氩离子激光器的波长有514.5nm,488.0nm, 457.9nm, 465.8nm, 476.5nm, 496.5nm等等,都在可见光范围内,是光强最强的可见光激光器,连续输出功率几瓦到十几瓦,医学上用作“光刀”和照射治疗,用于治疗眼科疾病比其它激光器优越,上、下消化道出血时,可用光学纤维传送此种激光于内腔,进行止血治疗,或治疗内腔肿瘤。
5.准分子激光器
准分子激光器是二十世纪七十年代发展起来的一种脉冲激光器,主要特点是波长短功率高,工作物质有稀有气体,稀有气体卤化物和稀有气体氧化物,输出波长从真空紫外到可见光区域。准分子激光已在军事上广泛应用,在医学上,有趋势表明它将成为CO2激光等传统激光器的重要竞争对手。
二、CO2激光器的工作原理
在CO2激光器的放电管内充有CO2、N2、He等混合气体,其配比和总气压可以在一定范围内变化(一般是:CO2:N2:He=1:0.5:2.5总气压为1066.58Pa)。任何分子都有三种不同的运动形式:一是分子里的电子运动,决定着电子能态;二是分子里的原子振动,即原子围绕其平衡位置不停地作周期性振动,这种运动决定了分子的振动能态;三是分子的转动,决定着分子的转动能态。CO2激关器就是利用CO2分子的振动和转动能级间的跃迁来产生激光的,激光波长为10.6μm。利用气体放电泵浦方法向CO2气体分子注入能量,使放电管中CO2分子达到反转分布状态:将直流电压的两输出端分别接到放电管的两电极上,当不加电压或电压很低时,两电极间的气体完全绝缘,内阻为无穷大,没有电流流过;随着电压的升高,气体中开始有带电粒子移动,气体的内阻开始减小,当达到某一电压值时,内阻急剧减小,电流迅速增加、气体被击穿、放电开始,这一电压值叫做着火电压;放电管中的气体被击穿放电后,电流增长、气体中载流子增加、激光放电管的内阻下降、又进一步引起电流的增加,这一过程反复进行,放电管呈现负阻效应,为了使放电能够稳定地工作在放电管电流—电压特性曲线的某一点上,在放电管的供电电路中采取了限流措施。放电管放电时,在混合气体中,N2分子与电子碰撞、获得的电子能量而被激发,而在N2分子与CO2分子碰撞时又把它从电子获得的能量转移给CO2分子,使CO2分子被激发,有利于激光的产生;管中的He气有冷却作用,可以阻止CO2气体温度上升,同时还可以使激光下能级减少,提高激光器的效率。
三、CO2激光器的故障
CO2激光器是光、机、电一体化结构,其中哪一方面出现异常都会影响其余方面,所以故障现象往往是错综复杂的综合故障的反应。从以下三个方面对CO2激光器的故障进行研讨。
1. 无激光输出
这是CO2激光器在使用中出现频率最高的故障,应从三个方面进行故障分析和检查。首先检查高压供电电路,因该机的直流高压电源高达到24kV。利用面板上的开关旋钮、指示灯及相应的电压表对故障进行分析判断;在断电的情况下测量高压供电电路是否有断路;确认高压变压器本身是否正常;对负责调整输出电压的可控硅及其触发电路进行测量、检查;在通电情况下用量程大于30kV的高压表测量直流高压电路输出的电压数值。根据笔者的调查统计,直流高压供电电路故障导致无激光输出的故障占该类故障总数的60%以上。其次检查光路仔细观察导光臂固定座的中心轴与CO2激光管的中心轴是否重合(应重合);CO2激光管的固定卡环是否松脱;激光管输出侧的平凸镜位置是否正常;输出窗是否清洁。最后检查激光管,如激光管放电正常,但无激光输出,可能是激光管两端腔片损坏或输出窗被遮盖;激光管有不正常的放电,无激光输出,可能是激光管中阳极或阴极损坏,或管中的工作气体被杂质气体所污染;激光管无放电,也无激光输出,则可能是阴极损坏或老化而不能发射电子,阴极或阳极引线封结处玻璃炸裂或激光管两端腔片粘结处漏气,空气进入激光管,从而激光管无法放电。
2. 激光输出弱(强度大大低于正常值)
此类故障的原因甚至比无激光输出故障更难分析和检查,仍需从直流高供电电路、激光光路、激光管本身三个方面进行,而且在整个过程中更强调指标的定量。检查电源电压的数值是否正常;旋动激光功率微调旋钮,看毫安表的数值能否灵敏地连续变化(在激光功率选择开关处于不同位置时分别进行);激光管的检查包括外观结构观察、光路各环节的正确位置、计算激光管的累计工作时间(激光管老化后效率下降,输出变小)。
3. 保护电路故障
一般有四种保护电路,哪一种发生故障,激光器都停止工作。过流保护电路,防止激光管因电路故障引起辉光放电电流过大而使电极损坏或电极线密封处炸裂(一旦炸裂,后果严重),工程技术人员对该保护电路应采取定期的预防性维修,被动性维修(即发生故障后才去维修)的方式不可取。
断水保护电路,CO2激光器工作时会产生大量热量,循环冷却水必须对激光管降温,水路不通时,激光管的直流高压被切断。加压泵工作不正常和水位开关接触不良是此类故障的主要原因。断水保护电路的检查是经常性的工作,不容忽视。
安全保护电路,主要由机柜上的门开关组成,为的是保证操作者和患者的安全。因机内有高达24kV的高压。故障原因大多是门开关处接触不良或门装的位置不正。 电源锁开关的保护,为防止非操作和维修人员对机器通电。故障往往由锁开关本身损坏引起,断电情况不用万用表测量即可判断其通、断是否正常。激光谐振腔的调整步骤如下:检查基准光源
红色的半导体激光是整个光路的基准,必须首先确保其准确性。用一个简易的高度规检查红光是否与光具座导轨顶面平行,幷处于光具座两条导轨间的中心綫上,如出现偏差,可以通过6个紧固螺钉进行调整。调整好后注意再检查一遍所有紧固螺钉是否已经完全拧紧。
调整输出镜(输出介质膜片)位置
调整输出镜前,应将装有YAG棒的聚光腔拿开,以免因光路中YAG棒的折射偏差影响调整的準确性。
输出介质膜片的準确位置应该是使红光位于其中心位置幷能将红光完全反射回红光的出射孔,否则应通过膜片架的旋钮进行仔细调整。注意调整完后应将膜片架调节旋钮上的锁紧圈完全锁紧,确保其位置的稳定性,然后再一次检查其反射光的位置是否保持在原位。
检查YAG棒的安装位置
用透明胶纸分别贴在YAG棒套的两端,观察红光光斑是否在两个棒套管的正中间位置,如有偏差,应通过调整聚光腔的位置加以修正。然后观察YAG棒的反射光位置,应与红光的出射孔重合,否则在兼顾红光尽可能保持在棒套管中心位置的前提下调整聚光腔的位置,使反射光儘量与出射孔靠拢,至少应保证调通过调整聚光腔的位置加以修正。然后观察YAG棒的反射光位置,应与红光的出射孔重合,否则在兼顾红光尽可能保持在棒套管中心位置的前提下调整聚光腔的位置,使反射光儘量与出射孔靠拢,至少应保证调整到与出射孔的偏差小于1mm 。
调整全反镜(全反介质膜片)位置
第一步:检查红光是否在介质膜片的中间位置,否则应调整介质膜片架的安装位置使红光在介质膜片的中心。
第二步:粗调介质膜片架旋钮,使红光反射回出射孔。
第三步:开启激光电源,将电流调至200A左右,脉宽调整到约2ms,重复频率调整到0Hz ,踩一下脚踏开关使脉冲氙灯闪光,此时用完全暴光的全黑像纸放在输出镜前,可以观察到有激光输出,反復调整膜片架的两个旋钮,使输出光斑最圆且均匀,然后逐渐降低电流至120A左右,进一步反復仔细地微调旋钮,尽可能使打到像纸上的光斑最圆且最强部分集中在光斑中心。
第四步:检查激光是否与红光重合,将像纸固定在激光输出镜的前端幷儘量远离输出镜的位置,发出一个激光脉冲,观察像纸上的光斑中心是否与红光中心重合,如不重合,可以微调输出镜和全反镜,使光斑与红光重合,然后再将像纸固定在离激光器输出镜800~1000mm的地方,再次检查光斑是否与红光重合。如能较好地重合,激光器即调整到了最佳状态。
第五步:锁紧各个调节旋钮,再一次检查像纸上的光斑是否良好,幷与红光同轴。否则应重新调整。检查光闸的位置 , 人工旋转反射镜片支架,将光闸推至挡光位置,观察红光是否在镜片的中间,其反射光是否位于光束终止器中心的吸收锥体上,如位置不正确可稍加调整,最后,应特别注意仔细检查一下光闸反射镜片是否清洁,受污染的镜片在使用中很快会炸裂, 至此激光器部分的调整工作结束。
方圆激光www.fyglaser.com
2014-122601 |